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Little-Group Approach to Gauge Theory
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Factor representations of the nonsemisimple E(2)-like little group for massless
particles are used to construct free gauge theories for arbitrary spin, which
explicitly solves the dichotomy between the unitary requirement and the
appearance of gauge degrees of freedom. This conceptually new approach may
help us understand the deep relation between gauge theory and space-time
symmetry.

In a fundamental paper Wigner(1) gave a complete classification of

unitary irreducible representations of the PoincareÂgroup based on the little-

group method. The relation between his results and the construction of relativ-

istic wave equations has already been discussed.(2±5) However, it is still
unclear how gauge theories for massless particles could be fitted into this

picture. For example, in ref. 5, it is claimed that all the covariant wave

functions corresponding to a given mass and spin are characterized by a

finite-dimensional representation of the Lorentz group and a spin projection,

and that, in the massless case, the spin projection is uniquely fixed by the

unitary condition.2 A relativistic wave equation is just the covariant expression
of the spin projection in the coordinate representation. But the vector-potential

description of the photon certainly lies outside this kind of construction since

the fixed spin projection allows for no gauge degrees of freedom. On the

other hand, it has been suggested that the appearance of gauge degrees of

freedom should originate from the nonsemisimple structure of the E(2)-like
little group for massless particles and that the translational degrees of freedom

in E(2) should correspond to gauge transformations.(6±9) Since a conceptually
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clear and complete analysis of this problem is lacking, it is the purpose of

the present paper to try to fill the gap.

First let us recall that, by the little-group method we mean a way to
construct unitary irreducible representations of the PoincareÂgroup from the

unitary irreducible representations of the little group, which leaves invari-

ant the four-momentum of a massive or massless particle, with orbit

completion. (10)

If we choose the four-momentum of a given free massless particle along

the z direction, i.e.,

p1 5 p2 5 0, p3 5 2 p0 (1)

then the generators of the little group are(8)

N1 5 K1 2 J2, N2 5 K2 1 J1, J3 (2)

where
-

J and
-

K are the generators of the rotations and Lorentz boosts, respec-

tively. It is easy to verify that

[J3, N1] 5 iN2 (3)

[J3, N2] 5 2 iN1 (4)

[N1, N2] 5 0 (5)

so that the Lie algebra of the little group is isomorphic to that of the 2-

dimensional Euclidean group E(2). Since the two ª translationsº N1 and N2

form an invariant abelian subalgebra, the E(2)-like little group is not

semisimple.

Now the matrix representation of the generators on the four-vector space

takes the form (8)

N1 5 3
0 0 2 i i

0 0 0 0

i 0 0 0

i 0 0 0 4 (6)

N2 5 3
0 0 0 0

0 0 2 i i

0 i 0 0

0 i 0 0 4 (7)

J3 5 3
0 2 i 0 0

i 0 0 0

0 0 0 0

0 0 0 0 4 (8)
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If we want to construct a four-potential theory for the photon, we should

start from this representation of the little group, which is obviously reducible.

However, due to the nonsemisimple structure of E(2), the representation is
not fully reducible.(9) Let us choose a convenient basis for the four-vector

space V as follows:

e + 5 3
1

i

0

0 4 , e 2 5 3
1

2 i

0

0 4 , n 5 3
0

0

2 1

1 4 , pÃ5 3
0

0

1

1 4 (9)

Then we have

N1n 5 i( e + 1 e 2 ), N2n 5 e + 2 e 2 , J3n 5 0 (10)

N1 e + 5 ipÃ, N2 e + 5 2 pÃ, J3 e + 5 e + (11)

N1 e 2 5 ipÃ, N2 e 2 5 pÃ, J3 e 2 5 2 e 2 (12)

N1pÃ5 0, N2 pÃ5 0, J3 pÃ5 0 (13)

Let us denote S0, S+, S 2 , S as the subspaces spanned by { pÃ}, { e +, pÃ},
{ e 2 , pÃ}, { e +, e 2 , pÃ}, respectively. Then we immediately find the following

lattice of invariant subspaces:

S+-
½½

-
½
½

V ® S S0 ® {0} (14)-
½½

-
½
½

S 2

where the arrows represent inclusion. The only irreducible subspace is S0,

on which the little group acts trivially. The corresponding scalar theory is

the only one that can be obtained by the spin projection method of ref. 5. It

is here that we introduce a conceptually new construction which enables us
to incorporate the vector potential gauge theory of the photon. The idea is

to use the factor representation3 of the little group. This is a standard procedure

to obtain the irreducible components of a reducible, yet not fully reducible

(decomposable) representation. For example, if the matrix representation T
of a group & is of the form

3 See, for example, Kirillov.(11) However, this concept is not discussed in most of the group
theory textbooks for physicists.
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T(a) 5 F T1(a) 0

Q(a) T2(a) G , a P & (15)

and the subrepresentation T2 is carried by the subspace W2 of the whole space
W, then the subrepresentation T1 can only be carried by the factor space W1 5
W/W2. In our case, we can build the plus (minus) helicity representation of

the E(2)-like little group on the factor space S+/S0 (S 2 /S0). For photons, parity

is conserved, so we should include the two helicity states in one representation

on S/S0. It is obvious that what we have factored out are just vectors propor-
tional to the four-momentum p since pÃis proportional to p, and this corres-

ponds to factoring out gauge transformations in the momentum representation.

Note that this kind of gauge transformation is produced by the ª translationsº

in the E(2)-like little group [see Eqs. (11) and (12)]. Therefore the use

of factor representation has enabled us to get a physically needed unitary

representation of the little group with the ª translationsº represented by unity
and thus solves the dichotomy between gauge degrees of freedom and the

unitary requirement, which is the main confusing point in previous discus-

sions.4 For a covariant description, we notice that S 5 {A m P V ) p m A m 5 0}

and S0 5 { l p m ) l P R}. The representation of the little group on the factor

space S/S0 is isomorphic to that on the tensor space {F m n 5 p m A n 2 p n A m ) A m P
S},(12),5 which has no gauge degree of freedom in it. However, when consider-
ing interactions, the vector-potential description should be the right

choice.(6,14)

This construction can be generalized to arbitrary spin. Notice that what

we should do is to construct unitary irreducible representations of the little

group with proper helicities, restricted from irreducible representations of

the Lorentz group. Let us recall that the rotation and boost generators
-

J ,
-

K satisfy the following commutation relations(4):

[Ji , Jj] 5 i « ijkJk (16)

[Ji , Kj] 5 i « ijk Kk (17)

[Ki , Kj] 5 2 i « ijkKk (18)

If we define Ai 5 1±2 (Ji 1 iKi), Bi 5 1±2 (Ji 2 iKi), then we have

[Ai , Aj] 5 i « ijkAk (19)

[Bi , Bj] 5 i « ijkBk (20)

4 For example, the unitary requirement is abandoned in ref. 5 to incorporate the vector gauge
theory.

5 Ref. 12 uses the theory of vector bundles and induced representations, which should be the
proper mathematical language for our discussion. For this aspect, see also Hermann.(13)
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[Ai , Bj] 5 0 (21)

Therefore finite-dimensional irreducible representations of the Lorentz group

can be labeled by (l, l8) such that

A2 5 A2
1 1 A2

2 1 A2
3 5 l(l 1 1) (22)

B2 5 B2
1 1 B2

2 1 B2
3 5 l8(l8 1 1) (23)

We can choose a basis { c i, i8 ) i 5 2 l, . . . , l; i8 5 2 l8, . . . , l8} such that

A3 c i, i8 5 i c i, i8 (24)

B3 c i, i8 5 i8 c i, i8 (25)

From Eq. (2), we see that

N1 5 K1 2 J2 5 2 i(A 2 2 B+) (26)

N2 5 K2 1 J1 5 A 2 1 B+ (27)

J3 5 A3 1 B3 (28)

Therefore we have

A 2 5 1±2 (iN1 1 N2) (29)

B+ 5 1±2 ( 2 iN1 1 N2) (30)

Knowing the action of N1 and N2 on the basis, we can now construct,

similar to (14), a lattice of invariant subspaces Si, i8 such that Si, i8 . Sj, j8

whenever i $ j, i8 # j 8. The space Si, i8 is just spanned by basis vectors

c j, j8 for 2 l # j # i, i8 # j 8 # l8. While the only irreducible subspace is

S 2 ll8, there are as many as (2l 1 1)(2l8 1 1) unitary irreducible components
which may be built on factor spaces. For example, the helicity (i 1 i8)
representation is built on the factor space Si, i8 /(Si 2 1, i8 % Si, i8 1 1). The transla-

tions N1 and N2 still generate ª gauge transformationsº which are properly

factored out. If we introduce the exterior product ` , we can identify this

representation with the one on the space Ti, i8 spanned by c i, i8 Ù c i 2 1, i8 Ù
c i, i8 1 1 Ù ? ? ? Ù c 2 l, l8.

To obtain a covariant description, we should start from tensors or tensor-

spinors. For integer helicity 6 j, we can use symmetric tensors A m 1... m j of order

j, with zero trace

g m 1 m 2 A m 1 m 2... m j 5 0 (31)

These tensors form an irreducible representation ( j/2, j/2) of the Lorentz

group. After applying the projection condition
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p m 1 A m 1... m j 5 0 (32)

we still have a big space containing tensors like

e m 1
6 . . . e m j

6

{ e m 1
6 . . . p m k . . . e m j

6 } (33)

:

p m 1 . . . p m j

where { } represents symmetrization. Therefore we should factor out all the

tensors containing the four-momentum p m , which can be generated from
e m 1

6 . . . e m j
6 by the action of the translations N1 and N2. This kind of construction

of gauge theories has already been discussed and used to derive the electro-
magnetic and gravitational field equations.(14,15)

For half-integer helicity j 1 1±2 , we can start from a traceless symmetric

tensor-spinor c m 1... m j satisfying

g m 1 m 2 c
m 1... m j 5 0 (34)

Now the spin projection conditions are

g m 1 c
m 1... m j 5 0 (35)

g m p m c m 1... m j 5 0 (36)

p m 1 c
m 1... m j 5 0 (37)

Notice that Eq. (37) can be derived from Eqs. (35) and (36). The restricted

subspace is spanned by

x 6 e m 1
6 . . . e m j

6

x 6 { e m 1
6 . . . p m k . . . e m j

6 } (38)

:

x 6 p m 1 . . . p m j

where x 6 are Dirac spinors with helicities 6 1±2 , satisfying g m p m x 6 5 0. Again

we should factor out all the terms containing p m . Similar discussions can be

found in the literature.(16)

From the above discussions, we see the importance of the four-vector

representation as a building block. However, since the left and right spinor

representations are more fundamental, we should discuss them. The E(2)-

like little group is now generated by
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T1 5 7 i±2 s 1 2 1±2 s 2 (39)

T2 5 1±2 s 1 7 i±2 s 2 5 2 ( 7 )iT1 (40)

S3 5 1±2 s 3 (41)

where 2 ( 1 ) corresponds to the left (right) spinor. Let us choose a basis

c + 5 1 1

0 2 , c 2 5 1 0

1 2 (42)

Then we have

S3 c + 5 1±2 c +, S3 c 2 5 2 1±2 c 2 (43)

T1 c 2 5 0, T1 c + 5 2 i c 2 (for left spinor) (44)

T1 c + 5 0, T1 c 2 5 i c + (for right spinor) (45)

Therefore, there is no gauge problem for the left spinor c 2 or the right spinor

c +, and they can be used to construct the well-known ª two-component theory

of neutrinos.º (8) But the left spinor c + and the right spinor c 2 correspond to

gauge spinors which have seldom been discussed (see, however, ref. 17).

In conclusion, we have shown that gauge theories are connected with

the factor representations of the E(2)-like little group for massless particles.
The spin projection scheme described in ref. 5 should be supplemented by

factoring out a suitable invariant subspace when discussing massless particles.

Gauge transformations are closely related to the ª translationsº in the E(2)-

like little group. These results may be helpful for a deeper understanding of

the gauge principle and its relation to space-time symmetry.
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